// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "internal/bytealg" "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // The code in this file implements stack trace walking for all architectures. // The most important fact about a given architecture is whether it uses a link register. // On systems with link registers, the prologue for a non-leaf function stores the // incoming value of LR at the bottom of the newly allocated stack frame. // On systems without link registers (x86), the architecture pushes a return PC during // the call instruction, so the return PC ends up above the stack frame. // In this file, the return PC is always called LR, no matter how it was found. const usesLR = sys.MinFrameSize > 0 // Traceback over the deferred function calls. // Report them like calls that have been invoked but not started executing yet. func tracebackdefers(gp *g, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer) { var frame stkframe for d := gp._defer; d != nil; d = d.link { fn := d.fn if fn == nil { // Defer of nil function. Args don't matter. frame.pc = 0 frame.fn = funcInfo{} frame.argp = 0 frame.arglen = 0 frame.argmap = nil } else { frame.pc = fn.fn f := findfunc(frame.pc) if !f.valid() { print("runtime: unknown pc in defer ", hex(frame.pc), "\n") throw("unknown pc") } frame.fn = f frame.argp = uintptr(deferArgs(d)) var ok bool frame.arglen, frame.argmap, ok = getArgInfoFast(f, true) if !ok { frame.arglen, frame.argmap = getArgInfo(&frame, f, true, fn) } } frame.continpc = frame.pc if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) { return } } } // Generic traceback. Handles runtime stack prints (pcbuf == nil), // the runtime.Callers function (pcbuf != nil), as well as the garbage // collector (callback != nil). A little clunky to merge these, but avoids // duplicating the code and all its subtlety. // // The skip argument is only valid with pcbuf != nil and counts the number // of logical frames to skip rather than physical frames (with inlining, a // PC in pcbuf can represent multiple calls). func gentraceback(pc0, sp0, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int { if skip > 0 && callback != nil { throw("gentraceback callback cannot be used with non-zero skip") } // Don't call this "g"; it's too easy get "g" and "gp" confused. if ourg := getg(); ourg == gp && ourg == ourg.m.curg { // The starting sp has been passed in as a uintptr, and the caller may // have other uintptr-typed stack references as well. // If during one of the calls that got us here or during one of the // callbacks below the stack must be grown, all these uintptr references // to the stack will not be updated, and gentraceback will continue // to inspect the old stack memory, which may no longer be valid. // Even if all the variables were updated correctly, it is not clear that // we want to expose a traceback that begins on one stack and ends // on another stack. That could confuse callers quite a bit. // Instead, we require that gentraceback and any other function that // accepts an sp for the current goroutine (typically obtained by // calling getcallersp) must not run on that goroutine's stack but // instead on the g0 stack. throw("gentraceback cannot trace user goroutine on its own stack") } level, _, _ := gotraceback() var ctxt *funcval // Context pointer for unstarted goroutines. See issue #25897. if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp. if gp.syscallsp != 0 { pc0 = gp.syscallpc sp0 = gp.syscallsp if usesLR { lr0 = 0 } } else { pc0 = gp.sched.pc sp0 = gp.sched.sp if usesLR { lr0 = gp.sched.lr } ctxt = (*funcval)(gp.sched.ctxt) } } nprint := 0 var frame stkframe frame.pc = pc0 frame.sp = sp0 if usesLR { frame.lr = lr0 } waspanic := false cgoCtxt := gp.cgoCtxt printing := pcbuf == nil && callback == nil // If the PC is zero, it's likely a nil function call. // Start in the caller's frame. if frame.pc == 0 { if usesLR { frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp)) frame.lr = 0 } else { frame.pc = uintptr(*(*uintptr)(unsafe.Pointer(frame.sp))) frame.sp += sys.PtrSize } } f := findfunc(frame.pc) if !f.valid() { if callback != nil || printing { print("runtime: unknown pc ", hex(frame.pc), "\n") tracebackHexdump(gp.stack, &frame, 0) } if callback != nil { throw("unknown pc") } return 0 } frame.fn = f var cache pcvalueCache lastFuncID := funcID_normal n := 0 for n < max { // Typically: // pc is the PC of the running function. // sp is the stack pointer at that program counter. // fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown. // stk is the stack containing sp. // The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp. f = frame.fn if f.pcsp == 0 { // No frame information, must be external function, like race support. // See golang.org/issue/13568. break } // Compute function info flags. flag := f.flag if f.funcID == funcID_cgocallback { // cgocallback does write SP to switch from the g0 to the curg stack, // but it carefully arranges that during the transition BOTH stacks // have cgocallback frame valid for unwinding through. // So we don't need to exclude it with the other SP-writing functions. flag &^= funcFlag_SPWRITE } if frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp { // Some Syscall functions write to SP, but they do so only after // saving the entry PC/SP using entersyscall. // Since we are using the entry PC/SP, the later SP write doesn't matter. flag &^= funcFlag_SPWRITE } // Found an actual function. // Derive frame pointer and link register. if frame.fp == 0 { // Jump over system stack transitions. If we're on g0 and there's a user // goroutine, try to jump. Otherwise this is a regular call. if flags&_TraceJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil { switch f.funcID { case funcID_morestack: // morestack does not return normally -- newstack() // gogo's to curg.sched. Match that. // This keeps morestack() from showing up in the backtrace, // but that makes some sense since it'll never be returned // to. frame.pc = gp.m.curg.sched.pc frame.fn = findfunc(frame.pc) f = frame.fn flag = f.flag frame.sp = gp.m.curg.sched.sp cgoCtxt = gp.m.curg.cgoCtxt case funcID_systemstack: // systemstack returns normally, so just follow the // stack transition. frame.sp = gp.m.curg.sched.sp cgoCtxt = gp.m.curg.cgoCtxt flag &^= funcFlag_SPWRITE } } frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc, &cache)) if !usesLR { // On x86, call instruction pushes return PC before entering new function. frame.fp += sys.PtrSize } } var flr funcInfo if flag&funcFlag_TOPFRAME != 0 { // This function marks the top of the stack. Stop the traceback. frame.lr = 0 flr = funcInfo{} } else if flag&funcFlag_SPWRITE != 0 && (callback == nil || n > 0) { // The function we are in does a write to SP that we don't know // how to encode in the spdelta table. Examples include context // switch routines like runtime.gogo but also any code that switches // to the g0 stack to run host C code. Since we can't reliably unwind // the SP (we might not even be on the stack we think we are), // we stop the traceback here. // This only applies for profiling signals (callback == nil). // // For a GC stack traversal (callback != nil), we should only see // a function when it has voluntarily preempted itself on entry // during the stack growth check. In that case, the function has // not yet had a chance to do any writes to SP and is safe to unwind. // isAsyncSafePoint does not allow assembly functions to be async preempted, // and preemptPark double-checks that SPWRITE functions are not async preempted. // So for GC stack traversal we leave things alone (this if body does not execute for n == 0) // at the bottom frame of the stack. But farther up the stack we'd better not // find any. if callback != nil { println("traceback: unexpected SPWRITE function", funcname(f)) throw("traceback") } frame.lr = 0 flr = funcInfo{} } else { var lrPtr uintptr if usesLR { if n == 0 && frame.sp < frame.fp || frame.lr == 0 { lrPtr = frame.sp frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr)) } } else { if frame.lr == 0 { lrPtr = frame.fp - sys.PtrSize frame.lr = uintptr(*(*uintptr)(unsafe.Pointer(lrPtr))) } } flr = findfunc(frame.lr) if !flr.valid() { // This happens if you get a profiling interrupt at just the wrong time. // In that context it is okay to stop early. // But if callback is set, we're doing a garbage collection and must // get everything, so crash loudly. doPrint := printing if doPrint && gp.m.incgo && f.funcID == funcID_sigpanic { // We can inject sigpanic // calls directly into C code, // in which case we'll see a C // return PC. Don't complain. doPrint = false } if callback != nil || doPrint { print("runtime: unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n") tracebackHexdump(gp.stack, &frame, lrPtr) } if callback != nil { throw("unknown caller pc") } } } frame.varp = frame.fp if !usesLR { // On x86, call instruction pushes return PC before entering new function. frame.varp -= sys.PtrSize } // For architectures with frame pointers, if there's // a frame, then there's a saved frame pointer here. // // NOTE: This code is not as general as it looks. // On x86, the ABI is to save the frame pointer word at the // top of the stack frame, so we have to back down over it. // On arm64, the frame pointer should be at the bottom of // the stack (with R29 (aka FP) = RSP), in which case we would // not want to do the subtraction here. But we started out without // any frame pointer, and when we wanted to add it, we didn't // want to break all the assembly doing direct writes to 8(RSP) // to set the first parameter to a called function. // So we decided to write the FP link *below* the stack pointer // (with R29 = RSP - 8 in Go functions). // This is technically ABI-compatible but not standard. // And it happens to end up mimicking the x86 layout. // Other architectures may make different decisions. if frame.varp > frame.sp && framepointer_enabled { frame.varp -= sys.PtrSize } // Derive size of arguments. // Most functions have a fixed-size argument block, // so we can use metadata about the function f. // Not all, though: there are some variadic functions // in package runtime and reflect, and for those we use call-specific // metadata recorded by f's caller. if callback != nil || printing { frame.argp = frame.fp + sys.MinFrameSize var ok bool frame.arglen, frame.argmap, ok = getArgInfoFast(f, callback != nil) if !ok { frame.arglen, frame.argmap = getArgInfo(&frame, f, callback != nil, ctxt) } } ctxt = nil // ctxt is only needed to get arg maps for the topmost frame // Determine frame's 'continuation PC', where it can continue. // Normally this is the return address on the stack, but if sigpanic // is immediately below this function on the stack, then the frame // stopped executing due to a trap, and frame.pc is probably not // a safe point for looking up liveness information. In this panicking case, // the function either doesn't return at all (if it has no defers or if the // defers do not recover) or it returns from one of the calls to // deferproc a second time (if the corresponding deferred func recovers). // In the latter case, use a deferreturn call site as the continuation pc. frame.continpc = frame.pc if waspanic { if frame.fn.deferreturn != 0 { frame.continpc = frame.fn.entry + uintptr(frame.fn.deferreturn) + 1 // Note: this may perhaps keep return variables alive longer than // strictly necessary, as we are using "function has a defer statement" // as a proxy for "function actually deferred something". It seems // to be a minor drawback. (We used to actually look through the // gp._defer for a defer corresponding to this function, but that // is hard to do with defer records on the stack during a stack copy.) // Note: the +1 is to offset the -1 that // stack.go:getStackMap does to back up a return // address make sure the pc is in the CALL instruction. } else { frame.continpc = 0 } } if callback != nil { if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) { return n } } if pcbuf != nil { pc := frame.pc // backup to CALL instruction to read inlining info (same logic as below) tracepc := pc // Normally, pc is a return address. In that case, we want to look up // file/line information using pc-1, because that is the pc of the // call instruction (more precisely, the last byte of the call instruction). // Callers expect the pc buffer to contain return addresses and do the // same -1 themselves, so we keep pc unchanged. // When the pc is from a signal (e.g. profiler or segv) then we want // to look up file/line information using pc, and we store pc+1 in the // pc buffer so callers can unconditionally subtract 1 before looking up. // See issue 34123. // The pc can be at function entry when the frame is initialized without // actually running code, like runtime.mstart. if (n == 0 && flags&_TraceTrap != 0) || waspanic || pc == f.entry { pc++ } else { tracepc-- } // If there is inlining info, record the inner frames. if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil { inltree := (*[1 << 20]inlinedCall)(inldata) for { ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, &cache) if ix < 0 { break } if inltree[ix].funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) { // ignore wrappers } else if skip > 0 { skip-- } else if n < max { (*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc n++ } lastFuncID = inltree[ix].funcID // Back up to an instruction in the "caller". tracepc = frame.fn.entry + uintptr(inltree[ix].parentPc) pc = tracepc + 1 } } // Record the main frame. if f.funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) { // Ignore wrapper functions (except when they trigger panics). } else if skip > 0 { skip-- } else if n < max { (*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc n++ } lastFuncID = f.funcID n-- // offset n++ below } if printing { // assume skip=0 for printing. // // Never elide wrappers if we haven't printed // any frames. And don't elide wrappers that // called panic rather than the wrapped // function. Otherwise, leave them out. // backup to CALL instruction to read inlining info (same logic as below) tracepc := frame.pc if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry && !waspanic { tracepc-- } // If there is inlining info, print the inner frames. if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil { inltree := (*[1 << 20]inlinedCall)(inldata) var inlFunc _func inlFuncInfo := funcInfo{&inlFunc, f.datap} for { ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, nil) if ix < 0 { break } // Create a fake _func for the // inlined function. inlFunc.nameoff = inltree[ix].func_ inlFunc.funcID = inltree[ix].funcID if (flags&_TraceRuntimeFrames) != 0 || showframe(inlFuncInfo, gp, nprint == 0, inlFuncInfo.funcID, lastFuncID) { name := funcname(inlFuncInfo) file, line := funcline(f, tracepc) print(name, "(...)\n") print("\t", file, ":", line, "\n") nprint++ } lastFuncID = inltree[ix].funcID // Back up to an instruction in the "caller". tracepc = frame.fn.entry + uintptr(inltree[ix].parentPc) } } if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp, nprint == 0, f.funcID, lastFuncID) { // Print during crash. // main(0x1, 0x2, 0x3) // /home/rsc/go/src/runtime/x.go:23 +0xf // name := funcname(f) file, line := funcline(f, tracepc) if name == "runtime.gopanic" { name = "panic" } print(name, "(") argp := unsafe.Pointer(frame.argp) printArgs(f, argp) print(")\n") print("\t", file, ":", line) if frame.pc > f.entry { print(" +", hex(frame.pc-f.entry)) } if gp.m != nil && gp.m.throwing > 0 && gp == gp.m.curg || level >= 2 { print(" fp=", hex(frame.fp), " sp=", hex(frame.sp), " pc=", hex(frame.pc)) } print("\n") nprint++ } lastFuncID = f.funcID } n++ if f.funcID == funcID_cgocallback && len(cgoCtxt) > 0 { ctxt := cgoCtxt[len(cgoCtxt)-1] cgoCtxt = cgoCtxt[:len(cgoCtxt)-1] // skip only applies to Go frames. // callback != nil only used when we only care // about Go frames. if skip == 0 && callback == nil { n = tracebackCgoContext(pcbuf, printing, ctxt, n, max) } } waspanic = f.funcID == funcID_sigpanic injectedCall := waspanic || f.funcID == funcID_asyncPreempt // Do not unwind past the bottom of the stack. if !flr.valid() { break } // Unwind to next frame. frame.fn = flr frame.pc = frame.lr frame.lr = 0 frame.sp = frame.fp frame.fp = 0 frame.argmap = nil // On link register architectures, sighandler saves the LR on stack // before faking a call. if usesLR && injectedCall { x := *(*uintptr)(unsafe.Pointer(frame.sp)) frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign) f = findfunc(frame.pc) frame.fn = f if !f.valid() { frame.pc = x } else if funcspdelta(f, frame.pc, &cache) == 0 { frame.lr = x } } } if printing { n = nprint } // Note that panic != nil is okay here: there can be leftover panics, // because the defers on the panic stack do not nest in frame order as // they do on the defer stack. If you have: // // frame 1 defers d1 // frame 2 defers d2 // frame 3 defers d3 // frame 4 panics // frame 4's panic starts running defers // frame 5, running d3, defers d4 // frame 5 panics // frame 5's panic starts running defers // frame 6, running d4, garbage collects // frame 6, running d2, garbage collects // // During the execution of d4, the panic stack is d4 -> d3, which // is nested properly, and we'll treat frame 3 as resumable, because we // can find d3. (And in fact frame 3 is resumable. If d4 recovers // and frame 5 continues running, d3, d3 can recover and we'll // resume execution in (returning from) frame 3.) // // During the execution of d2, however, the panic stack is d2 -> d3, // which is inverted. The scan will match d2 to frame 2 but having // d2 on the stack until then means it will not match d3 to frame 3. // This is okay: if we're running d2, then all the defers after d2 have // completed and their corresponding frames are dead. Not finding d3 // for frame 3 means we'll set frame 3's continpc == 0, which is correct // (frame 3 is dead). At the end of the walk the panic stack can thus // contain defers (d3 in this case) for dead frames. The inversion here // always indicates a dead frame, and the effect of the inversion on the // scan is to hide those dead frames, so the scan is still okay: // what's left on the panic stack are exactly (and only) the dead frames. // // We require callback != nil here because only when callback != nil // do we know that gentraceback is being called in a "must be correct" // context as opposed to a "best effort" context. The tracebacks with // callbacks only happen when everything is stopped nicely. // At other times, such as when gathering a stack for a profiling signal // or when printing a traceback during a crash, everything may not be // stopped nicely, and the stack walk may not be able to complete. if callback != nil && n < max && frame.sp != gp.stktopsp { print("runtime: g", gp.goid, ": frame.sp=", hex(frame.sp), " top=", hex(gp.stktopsp), "\n") print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "] n=", n, " max=", max, "\n") throw("traceback did not unwind completely") } return n } // printArgs prints function arguments in traceback. func printArgs(f funcInfo, argp unsafe.Pointer) { // The "instruction" of argument printing is encoded in _FUNCDATA_ArgInfo. // See cmd/compile/internal/ssagen.emitArgInfo for the description of the // encoding. // These constants need to be in sync with the compiler. const ( _endSeq = 0xff _startAgg = 0xfe _endAgg = 0xfd _dotdotdot = 0xfc _offsetTooLarge = 0xfb ) const ( limit = 10 // print no more than 10 args/components maxDepth = 5 // no more than 5 layers of nesting maxLen = (maxDepth*3+2)*limit + 1 // max length of _FUNCDATA_ArgInfo (see the compiler side for reasoning) ) p := (*[maxLen]uint8)(funcdata(f, _FUNCDATA_ArgInfo)) if p == nil { return } print1 := func(off, sz uint8) { x := readUnaligned64(add(argp, uintptr(off))) // mask out irrelavant bits if sz < 8 { shift := 64 - sz*8 if sys.BigEndian { x = x >> shift } else { x = x << shift >> shift } } print(hex(x)) } start := true printcomma := func() { if !start { print(", ") } } pi := 0 printloop: for { o := p[pi] pi++ switch o { case _endSeq: break printloop case _startAgg: printcomma() print("{") start = true continue case _endAgg: print("}") case _dotdotdot: printcomma() print("...") case _offsetTooLarge: printcomma() print("_") default: printcomma() sz := p[pi] pi++ print1(o, sz) } start = false } } // reflectMethodValue is a partial duplicate of reflect.makeFuncImpl // and reflect.methodValue. type reflectMethodValue struct { fn uintptr stack *bitvector // ptrmap for both args and results argLen uintptr // just args } // getArgInfoFast returns the argument frame information for a call to f. // It is short and inlineable. However, it does not handle all functions. // If ok reports false, you must call getArgInfo instead. // TODO(josharian): once we do mid-stack inlining, // call getArgInfo directly from getArgInfoFast and stop returning an ok bool. func getArgInfoFast(f funcInfo, needArgMap bool) (arglen uintptr, argmap *bitvector, ok bool) { return uintptr(f.args), nil, !(needArgMap && f.args == _ArgsSizeUnknown) } // getArgInfo returns the argument frame information for a call to f // with call frame frame. // // This is used for both actual calls with active stack frames and for // deferred calls or goroutines that are not yet executing. If this is an actual // call, ctxt must be nil (getArgInfo will retrieve what it needs from // the active stack frame). If this is a deferred call or unstarted goroutine, // ctxt must be the function object that was deferred or go'd. func getArgInfo(frame *stkframe, f funcInfo, needArgMap bool, ctxt *funcval) (arglen uintptr, argmap *bitvector) { arglen = uintptr(f.args) if needArgMap && f.args == _ArgsSizeUnknown { // Extract argument bitmaps for reflect stubs from the calls they made to reflect. switch funcname(f) { case "reflect.makeFuncStub", "reflect.methodValueCall": // These take a *reflect.methodValue as their // context register. var mv *reflectMethodValue var retValid bool if ctxt != nil { // This is not an actual call, but a // deferred call or an unstarted goroutine. // The function value is itself the *reflect.methodValue. mv = (*reflectMethodValue)(unsafe.Pointer(ctxt)) } else { // This is a real call that took the // *reflect.methodValue as its context // register and immediately saved it // to 0(SP). Get the methodValue from // 0(SP). arg0 := frame.sp + sys.MinFrameSize mv = *(**reflectMethodValue)(unsafe.Pointer(arg0)) // Figure out whether the return values are valid. // Reflect will update this value after it copies // in the return values. retValid = *(*bool)(unsafe.Pointer(arg0 + 4*sys.PtrSize)) } if mv.fn != f.entry { print("runtime: confused by ", funcname(f), "\n") throw("reflect mismatch") } bv := mv.stack arglen = uintptr(bv.n * sys.PtrSize) if !retValid { arglen = uintptr(mv.argLen) &^ (sys.PtrSize - 1) } argmap = bv } } return } // tracebackCgoContext handles tracing back a cgo context value, from // the context argument to setCgoTraceback, for the gentraceback // function. It returns the new value of n. func tracebackCgoContext(pcbuf *uintptr, printing bool, ctxt uintptr, n, max int) int { var cgoPCs [32]uintptr cgoContextPCs(ctxt, cgoPCs[:]) var arg cgoSymbolizerArg anySymbolized := false for _, pc := range cgoPCs { if pc == 0 || n >= max { break } if pcbuf != nil { (*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc } if printing { if cgoSymbolizer == nil { print("non-Go function at pc=", hex(pc), "\n") } else { c := printOneCgoTraceback(pc, max-n, &arg) n += c - 1 // +1 a few lines down anySymbolized = true } } n++ } if anySymbolized { arg.pc = 0 callCgoSymbolizer(&arg) } return n } func printcreatedby(gp *g) { // Show what created goroutine, except main goroutine (goid 1). pc := gp.gopc f := findfunc(pc) if f.valid() && showframe(f, gp, false, funcID_normal, funcID_normal) && gp.goid != 1 { printcreatedby1(f, pc) } } func printcreatedby1(f funcInfo, pc uintptr) { print("created by ", funcname(f), "\n") tracepc := pc // back up to CALL instruction for funcline. if pc > f.entry { tracepc -= sys.PCQuantum } file, line := funcline(f, tracepc) print("\t", file, ":", line) if pc > f.entry { print(" +", hex(pc-f.entry)) } print("\n") } func traceback(pc, sp, lr uintptr, gp *g) { traceback1(pc, sp, lr, gp, 0) } // tracebacktrap is like traceback but expects that the PC and SP were obtained // from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp. // Because they are from a trap instead of from a saved pair, // the initial PC must not be rewound to the previous instruction. // (All the saved pairs record a PC that is a return address, so we // rewind it into the CALL instruction.) // If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to // the pc/sp/lr passed in. func tracebacktrap(pc, sp, lr uintptr, gp *g) { if gp.m.libcallsp != 0 { // We're in C code somewhere, traceback from the saved position. traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0) return } traceback1(pc, sp, lr, gp, _TraceTrap) } func traceback1(pc, sp, lr uintptr, gp *g, flags uint) { // If the goroutine is in cgo, and we have a cgo traceback, print that. if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 { // Lock cgoCallers so that a signal handler won't // change it, copy the array, reset it, unlock it. // We are locked to the thread and are not running // concurrently with a signal handler. // We just have to stop a signal handler from interrupting // in the middle of our copy. atomic.Store(&gp.m.cgoCallersUse, 1) cgoCallers := *gp.m.cgoCallers gp.m.cgoCallers[0] = 0 atomic.Store(&gp.m.cgoCallersUse, 0) printCgoTraceback(&cgoCallers) } var n int if readgstatus(gp)&^_Gscan == _Gsyscall { // Override registers if blocked in system call. pc = gp.syscallpc sp = gp.syscallsp flags &^= _TraceTrap } // Print traceback. By default, omits runtime frames. // If that means we print nothing at all, repeat forcing all frames printed. n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags) if n == 0 && (flags&_TraceRuntimeFrames) == 0 { n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames) } if n == _TracebackMaxFrames { print("...additional frames elided...\n") } printcreatedby(gp) if gp.ancestors == nil { return } for _, ancestor := range *gp.ancestors { printAncestorTraceback(ancestor) } } // printAncestorTraceback prints the traceback of the given ancestor. // TODO: Unify this with gentraceback and CallersFrames. func printAncestorTraceback(ancestor ancestorInfo) { print("[originating from goroutine ", ancestor.goid, "]:\n") for fidx, pc := range ancestor.pcs { f := findfunc(pc) // f previously validated if showfuncinfo(f, fidx == 0, funcID_normal, funcID_normal) { printAncestorTracebackFuncInfo(f, pc) } } if len(ancestor.pcs) == _TracebackMaxFrames { print("...additional frames elided...\n") } // Show what created goroutine, except main goroutine (goid 1). f := findfunc(ancestor.gopc) if f.valid() && showfuncinfo(f, false, funcID_normal, funcID_normal) && ancestor.goid != 1 { printcreatedby1(f, ancestor.gopc) } } // printAncestorTraceback prints the given function info at a given pc // within an ancestor traceback. The precision of this info is reduced // due to only have access to the pcs at the time of the caller // goroutine being created. func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) { name := funcname(f) if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil { inltree := (*[1 << 20]inlinedCall)(inldata) ix := pcdatavalue(f, _PCDATA_InlTreeIndex, pc, nil) if ix >= 0 { name = funcnameFromNameoff(f, inltree[ix].func_) } } file, line := funcline(f, pc) if name == "runtime.gopanic" { name = "panic" } print(name, "(...)\n") print("\t", file, ":", line) if pc > f.entry { print(" +", hex(pc-f.entry)) } print("\n") } func callers(skip int, pcbuf []uintptr) int { sp := getcallersp() pc := getcallerpc() gp := getg() var n int systemstack(func() { n = gentraceback(pc, sp, 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0) }) return n } func gcallers(gp *g, skip int, pcbuf []uintptr) int { return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0) } // showframe reports whether the frame with the given characteristics should // be printed during a traceback. func showframe(f funcInfo, gp *g, firstFrame bool, funcID, childID funcID) bool { g := getg() if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig.ptr()) { return true } return showfuncinfo(f, firstFrame, funcID, childID) } // showfuncinfo reports whether a function with the given characteristics should // be printed during a traceback. func showfuncinfo(f funcInfo, firstFrame bool, funcID, childID funcID) bool { // Note that f may be a synthesized funcInfo for an inlined // function, in which case only nameoff and funcID are set. level, _, _ := gotraceback() if level > 1 { // Show all frames. return true } if !f.valid() { return false } if funcID == funcID_wrapper && elideWrapperCalling(childID) { return false } name := funcname(f) // Special case: always show runtime.gopanic frame // in the middle of a stack trace, so that we can // see the boundary between ordinary code and // panic-induced deferred code. // See golang.org/issue/5832. if name == "runtime.gopanic" && !firstFrame { return true } return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name)) } // isExportedRuntime reports whether name is an exported runtime function. // It is only for runtime functions, so ASCII A-Z is fine. func isExportedRuntime(name string) bool { const n = len("runtime.") return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z' } // elideWrapperCalling reports whether a wrapper function that called // function id should be elided from stack traces. func elideWrapperCalling(id funcID) bool { // If the wrapper called a panic function instead of the // wrapped function, we want to include it in stacks. return !(id == funcID_gopanic || id == funcID_sigpanic || id == funcID_panicwrap) } var gStatusStrings = [...]string{ _Gidle: "idle", _Grunnable: "runnable", _Grunning: "running", _Gsyscall: "syscall", _Gwaiting: "waiting", _Gdead: "dead", _Gcopystack: "copystack", _Gpreempted: "preempted", } func goroutineheader(gp *g) { gpstatus := readgstatus(gp) isScan := gpstatus&_Gscan != 0 gpstatus &^= _Gscan // drop the scan bit // Basic string status var status string if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) { status = gStatusStrings[gpstatus] } else { status = "???" } // Override. if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero { status = gp.waitreason.String() } // approx time the G is blocked, in minutes var waitfor int64 if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 { waitfor = (nanotime() - gp.waitsince) / 60e9 } print("goroutine ", gp.goid, " [", status) if isScan { print(" (scan)") } if waitfor >= 1 { print(", ", waitfor, " minutes") } if gp.lockedm != 0 { print(", locked to thread") } print("]:\n") } func tracebackothers(me *g) { level, _, _ := gotraceback() // Show the current goroutine first, if we haven't already. curgp := getg().m.curg if curgp != nil && curgp != me { print("\n") goroutineheader(curgp) traceback(^uintptr(0), ^uintptr(0), 0, curgp) } // We can't call locking forEachG here because this may be during fatal // throw/panic, where locking could be out-of-order or a direct // deadlock. // // Instead, use forEachGRace, which requires no locking. We don't lock // against concurrent creation of new Gs, but even with allglock we may // miss Gs created after this loop. forEachGRace(func(gp *g) { if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 { return } print("\n") goroutineheader(gp) // Note: gp.m == g.m occurs when tracebackothers is // called from a signal handler initiated during a // systemstack call. The original G is still in the // running state, and we want to print its stack. if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning { print("\tgoroutine running on other thread; stack unavailable\n") printcreatedby(gp) } else { traceback(^uintptr(0), ^uintptr(0), 0, gp) } }) } // tracebackHexdump hexdumps part of stk around frame.sp and frame.fp // for debugging purposes. If the address bad is included in the // hexdumped range, it will mark it as well. func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) { const expand = 32 * sys.PtrSize const maxExpand = 256 * sys.PtrSize // Start around frame.sp. lo, hi := frame.sp, frame.sp // Expand to include frame.fp. if frame.fp != 0 && frame.fp < lo { lo = frame.fp } if frame.fp != 0 && frame.fp > hi { hi = frame.fp } // Expand a bit more. lo, hi = lo-expand, hi+expand // But don't go too far from frame.sp. if lo < frame.sp-maxExpand { lo = frame.sp - maxExpand } if hi > frame.sp+maxExpand { hi = frame.sp + maxExpand } // And don't go outside the stack bounds. if lo < stk.lo { lo = stk.lo } if hi > stk.hi { hi = stk.hi } // Print the hex dump. print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n") hexdumpWords(lo, hi, func(p uintptr) byte { switch p { case frame.fp: return '>' case frame.sp: return '<' case bad: return '!' } return 0 }) } // isSystemGoroutine reports whether the goroutine g must be omitted // in stack dumps and deadlock detector. This is any goroutine that // starts at a runtime.* entry point, except for runtime.main, // runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq. // // If fixed is true, any goroutine that can vary between user and // system (that is, the finalizer goroutine) is considered a user // goroutine. func isSystemGoroutine(gp *g, fixed bool) bool { // Keep this in sync with cmd/trace/trace.go:isSystemGoroutine. f := findfunc(gp.startpc) if !f.valid() { return false } if f.funcID == funcID_runtime_main || f.funcID == funcID_handleAsyncEvent { return false } if f.funcID == funcID_runfinq { // We include the finalizer goroutine if it's calling // back into user code. if fixed { // This goroutine can vary. In fixed mode, // always consider it a user goroutine. return false } return !fingRunning } return hasPrefix(funcname(f), "runtime.") } // SetCgoTraceback records three C functions to use to gather // traceback information from C code and to convert that traceback // information into symbolic information. These are used when printing // stack traces for a program that uses cgo. // // The traceback and context functions may be called from a signal // handler, and must therefore use only async-signal safe functions. // The symbolizer function may be called while the program is // crashing, and so must be cautious about using memory. None of the // functions may call back into Go. // // The context function will be called with a single argument, a // pointer to a struct: // // struct { // Context uintptr // } // // In C syntax, this struct will be // // struct { // uintptr_t Context; // }; // // If the Context field is 0, the context function is being called to // record the current traceback context. It should record in the // Context field whatever information is needed about the current // point of execution to later produce a stack trace, probably the // stack pointer and PC. In this case the context function will be // called from C code. // // If the Context field is not 0, then it is a value returned by a // previous call to the context function. This case is called when the // context is no longer needed; that is, when the Go code is returning // to its C code caller. This permits the context function to release // any associated resources. // // While it would be correct for the context function to record a // complete a stack trace whenever it is called, and simply copy that // out in the traceback function, in a typical program the context // function will be called many times without ever recording a // traceback for that context. Recording a complete stack trace in a // call to the context function is likely to be inefficient. // // The traceback function will be called with a single argument, a // pointer to a struct: // // struct { // Context uintptr // SigContext uintptr // Buf *uintptr // Max uintptr // } // // In C syntax, this struct will be // // struct { // uintptr_t Context; // uintptr_t SigContext; // uintptr_t* Buf; // uintptr_t Max; // }; // // The Context field will be zero to gather a traceback from the // current program execution point. In this case, the traceback // function will be called from C code. // // Otherwise Context will be a value previously returned by a call to // the context function. The traceback function should gather a stack // trace from that saved point in the program execution. The traceback // function may be called from an execution thread other than the one // that recorded the context, but only when the context is known to be // valid and unchanging. The traceback function may also be called // deeper in the call stack on the same thread that recorded the // context. The traceback function may be called multiple times with // the same Context value; it will usually be appropriate to cache the // result, if possible, the first time this is called for a specific // context value. // // If the traceback function is called from a signal handler on a Unix // system, SigContext will be the signal context argument passed to // the signal handler (a C ucontext_t* cast to uintptr_t). This may be // used to start tracing at the point where the signal occurred. If // the traceback function is not called from a signal handler, // SigContext will be zero. // // Buf is where the traceback information should be stored. It should // be PC values, such that Buf[0] is the PC of the caller, Buf[1] is // the PC of that function's caller, and so on. Max is the maximum // number of entries to store. The function should store a zero to // indicate the top of the stack, or that the caller is on a different // stack, presumably a Go stack. // // Unlike runtime.Callers, the PC values returned should, when passed // to the symbolizer function, return the file/line of the call // instruction. No additional subtraction is required or appropriate. // // On all platforms, the traceback function is invoked when a call from // Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le, // and freebsd/amd64, the traceback function is also invoked when a // signal is received by a thread that is executing a cgo call. The // traceback function should not make assumptions about when it is // called, as future versions of Go may make additional calls. // // The symbolizer function will be called with a single argument, a // pointer to a struct: // // struct { // PC uintptr // program counter to fetch information for // File *byte // file name (NUL terminated) // Lineno uintptr // line number // Func *byte // function name (NUL terminated) // Entry uintptr // function entry point // More uintptr // set non-zero if more info for this PC // Data uintptr // unused by runtime, available for function // } // // In C syntax, this struct will be // // struct { // uintptr_t PC; // char* File; // uintptr_t Lineno; // char* Func; // uintptr_t Entry; // uintptr_t More; // uintptr_t Data; // }; // // The PC field will be a value returned by a call to the traceback // function. // // The first time the function is called for a particular traceback, // all the fields except PC will be 0. The function should fill in the // other fields if possible, setting them to 0/nil if the information // is not available. The Data field may be used to store any useful // information across calls. The More field should be set to non-zero // if there is more information for this PC, zero otherwise. If More // is set non-zero, the function will be called again with the same // PC, and may return different information (this is intended for use // with inlined functions). If More is zero, the function will be // called with the next PC value in the traceback. When the traceback // is complete, the function will be called once more with PC set to // zero; this may be used to free any information. Each call will // leave the fields of the struct set to the same values they had upon // return, except for the PC field when the More field is zero. The // function must not keep a copy of the struct pointer between calls. // // When calling SetCgoTraceback, the version argument is the version // number of the structs that the functions expect to receive. // Currently this must be zero. // // The symbolizer function may be nil, in which case the results of // the traceback function will be displayed as numbers. If the // traceback function is nil, the symbolizer function will never be // called. The context function may be nil, in which case the // traceback function will only be called with the context field set // to zero. If the context function is nil, then calls from Go to C // to Go will not show a traceback for the C portion of the call stack. // // SetCgoTraceback should be called only once, ideally from an init function. func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) { if version != 0 { panic("unsupported version") } if cgoTraceback != nil && cgoTraceback != traceback || cgoContext != nil && cgoContext != context || cgoSymbolizer != nil && cgoSymbolizer != symbolizer { panic("call SetCgoTraceback only once") } cgoTraceback = traceback cgoContext = context cgoSymbolizer = symbolizer // The context function is called when a C function calls a Go // function. As such it is only called by C code in runtime/cgo. if _cgo_set_context_function != nil { cgocall(_cgo_set_context_function, context) } } var cgoTraceback unsafe.Pointer var cgoContext unsafe.Pointer var cgoSymbolizer unsafe.Pointer // cgoTracebackArg is the type passed to cgoTraceback. type cgoTracebackArg struct { context uintptr sigContext uintptr buf *uintptr max uintptr } // cgoContextArg is the type passed to the context function. type cgoContextArg struct { context uintptr } // cgoSymbolizerArg is the type passed to cgoSymbolizer. type cgoSymbolizerArg struct { pc uintptr file *byte lineno uintptr funcName *byte entry uintptr more uintptr data uintptr } // cgoTraceback prints a traceback of callers. func printCgoTraceback(callers *cgoCallers) { if cgoSymbolizer == nil { for _, c := range callers { if c == 0 { break } print("non-Go function at pc=", hex(c), "\n") } return } var arg cgoSymbolizerArg for _, c := range callers { if c == 0 { break } printOneCgoTraceback(c, 0x7fffffff, &arg) } arg.pc = 0 callCgoSymbolizer(&arg) } // printOneCgoTraceback prints the traceback of a single cgo caller. // This can print more than one line because of inlining. // Returns the number of frames printed. func printOneCgoTraceback(pc uintptr, max int, arg *cgoSymbolizerArg) int { c := 0 arg.pc = pc for c <= max { callCgoSymbolizer(arg) if arg.funcName != nil { // Note that we don't print any argument // information here, not even parentheses. // The symbolizer must add that if appropriate. println(gostringnocopy(arg.funcName)) } else { println("non-Go function") } print("\t") if arg.file != nil { print(gostringnocopy(arg.file), ":", arg.lineno, " ") } print("pc=", hex(pc), "\n") c++ if arg.more == 0 { break } } return c } // callCgoSymbolizer calls the cgoSymbolizer function. func callCgoSymbolizer(arg *cgoSymbolizerArg) { call := cgocall if panicking > 0 || getg().m.curg != getg() { // We do not want to call into the scheduler when panicking // or when on the system stack. call = asmcgocall } if msanenabled { msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{})) } call(cgoSymbolizer, noescape(unsafe.Pointer(arg))) } // cgoContextPCs gets the PC values from a cgo traceback. func cgoContextPCs(ctxt uintptr, buf []uintptr) { if cgoTraceback == nil { return } call := cgocall if panicking > 0 || getg().m.curg != getg() { // We do not want to call into the scheduler when panicking // or when on the system stack. call = asmcgocall } arg := cgoTracebackArg{ context: ctxt, buf: (*uintptr)(noescape(unsafe.Pointer(&buf[0]))), max: uintptr(len(buf)), } if msanenabled { msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg)) } call(cgoTraceback, noescape(unsafe.Pointer(&arg))) }