// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/math" "runtime/internal/sys" "unsafe" ) type slice struct { array unsafe.Pointer len int cap int } // A notInHeapSlice is a slice backed by go:notinheap memory. type notInHeapSlice struct { array *notInHeap len int cap int } func panicmakeslicelen() { panic(errorString("makeslice: len out of range")) } func panicmakeslicecap() { panic(errorString("makeslice: cap out of range")) } // makeslicecopy allocates a slice of "tolen" elements of type "et", // then copies "fromlen" elements of type "et" into that new allocation from "from". func makeslicecopy(et *_type, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer { var tomem, copymem uintptr if uintptr(tolen) > uintptr(fromlen) { var overflow bool tomem, overflow = math.MulUintptr(et.size, uintptr(tolen)) if overflow || tomem > maxAlloc || tolen < 0 { panicmakeslicelen() } copymem = et.size * uintptr(fromlen) } else { // fromlen is a known good length providing and equal or greater than tolen, // thereby making tolen a good slice length too as from and to slices have the // same element width. tomem = et.size * uintptr(tolen) copymem = tomem } var to unsafe.Pointer if et.ptrdata == 0 { to = mallocgc(tomem, nil, false) if copymem < tomem { memclrNoHeapPointers(add(to, copymem), tomem-copymem) } } else { // Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory. to = mallocgc(tomem, et, true) if copymem > 0 && writeBarrier.enabled { // Only shade the pointers in old.array since we know the destination slice to // only contains nil pointers because it has been cleared during alloc. bulkBarrierPreWriteSrcOnly(uintptr(to), uintptr(from), copymem) } } if raceenabled { callerpc := getcallerpc() pc := funcPC(makeslicecopy) racereadrangepc(from, copymem, callerpc, pc) } if msanenabled { msanread(from, copymem) } memmove(to, from, copymem) return to } func makeslice(et *_type, len, cap int) unsafe.Pointer { mem, overflow := math.MulUintptr(et.size, uintptr(cap)) if overflow || mem > maxAlloc || len < 0 || len > cap { // NOTE: Produce a 'len out of range' error instead of a // 'cap out of range' error when someone does make([]T, bignumber). // 'cap out of range' is true too, but since the cap is only being // supplied implicitly, saying len is clearer. // See golang.org/issue/4085. mem, overflow := math.MulUintptr(et.size, uintptr(len)) if overflow || mem > maxAlloc || len < 0 { panicmakeslicelen() } panicmakeslicecap() } return mallocgc(mem, et, true) } func makeslice64(et *_type, len64, cap64 int64) unsafe.Pointer { len := int(len64) if int64(len) != len64 { panicmakeslicelen() } cap := int(cap64) if int64(cap) != cap64 { panicmakeslicecap() } return makeslice(et, len, cap) } func unsafeslice(et *_type, ptr unsafe.Pointer, len int) { if len == 0 { return } if ptr == nil { panic(errorString("unsafe.Slice: ptr is nil and len is not zero")) } mem, overflow := math.MulUintptr(et.size, uintptr(len)) if overflow || mem > maxAlloc || len < 0 { panicunsafeslicelen() } } func unsafeslice64(et *_type, ptr unsafe.Pointer, len64 int64) { len := int(len64) if int64(len) != len64 { panicunsafeslicelen() } unsafeslice(et, ptr, len) } func unsafeslicecheckptr(et *_type, ptr unsafe.Pointer, len64 int64) { unsafeslice64(et, ptr, len64) // Check that underlying array doesn't straddle multiple heap objects. // unsafeslice64 has already checked for overflow. if checkptrStraddles(ptr, uintptr(len64)*et.size) { throw("checkptr: unsafe.Slice result straddles multiple allocations") } } func panicunsafeslicelen() { panic(errorString("unsafe.Slice: len out of range")) } // growslice handles slice growth during append. // It is passed the slice element type, the old slice, and the desired new minimum capacity, // and it returns a new slice with at least that capacity, with the old data // copied into it. // The new slice's length is set to the old slice's length, // NOT to the new requested capacity. // This is for codegen convenience. The old slice's length is used immediately // to calculate where to write new values during an append. // TODO: When the old backend is gone, reconsider this decision. // The SSA backend might prefer the new length or to return only ptr/cap and save stack space. func growslice(et *_type, old slice, cap int) slice { if raceenabled { callerpc := getcallerpc() racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice)) } if msanenabled { msanread(old.array, uintptr(old.len*int(et.size))) } if cap < old.cap { panic(errorString("growslice: cap out of range")) } if et.size == 0 { // append should not create a slice with nil pointer but non-zero len. // We assume that append doesn't need to preserve old.array in this case. return slice{unsafe.Pointer(&zerobase), old.len, cap} } newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { if old.cap < 1024 { newcap = doublecap } else { // Check 0 < newcap to detect overflow // and prevent an infinite loop. for 0 < newcap && newcap < cap { newcap += newcap / 4 } // Set newcap to the requested cap when // the newcap calculation overflowed. if newcap <= 0 { newcap = cap } } } var overflow bool var lenmem, newlenmem, capmem uintptr // Specialize for common values of et.size. // For 1 we don't need any division/multiplication. // For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant. // For powers of 2, use a variable shift. switch { case et.size == 1: lenmem = uintptr(old.len) newlenmem = uintptr(cap) capmem = roundupsize(uintptr(newcap)) overflow = uintptr(newcap) > maxAlloc newcap = int(capmem) case et.size == sys.PtrSize: lenmem = uintptr(old.len) * sys.PtrSize newlenmem = uintptr(cap) * sys.PtrSize capmem = roundupsize(uintptr(newcap) * sys.PtrSize) overflow = uintptr(newcap) > maxAlloc/sys.PtrSize newcap = int(capmem / sys.PtrSize) case isPowerOfTwo(et.size): var shift uintptr if sys.PtrSize == 8 { // Mask shift for better code generation. shift = uintptr(sys.Ctz64(uint64(et.size))) & 63 } else { shift = uintptr(sys.Ctz32(uint32(et.size))) & 31 } lenmem = uintptr(old.len) << shift newlenmem = uintptr(cap) << shift capmem = roundupsize(uintptr(newcap) << shift) overflow = uintptr(newcap) > (maxAlloc >> shift) newcap = int(capmem >> shift) default: lenmem = uintptr(old.len) * et.size newlenmem = uintptr(cap) * et.size capmem, overflow = math.MulUintptr(et.size, uintptr(newcap)) capmem = roundupsize(capmem) newcap = int(capmem / et.size) } // The check of overflow in addition to capmem > maxAlloc is needed // to prevent an overflow which can be used to trigger a segfault // on 32bit architectures with this example program: // // type T [1<<27 + 1]int64 // // var d T // var s []T // // func main() { // s = append(s, d, d, d, d) // print(len(s), "\n") // } if overflow || capmem > maxAlloc { panic(errorString("growslice: cap out of range")) } var p unsafe.Pointer if et.ptrdata == 0 { p = mallocgc(capmem, nil, false) // The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length). // Only clear the part that will not be overwritten. memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem) } else { // Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory. p = mallocgc(capmem, et, true) if lenmem > 0 && writeBarrier.enabled { // Only shade the pointers in old.array since we know the destination slice p // only contains nil pointers because it has been cleared during alloc. bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem-et.size+et.ptrdata) } } memmove(p, old.array, lenmem) return slice{p, old.len, newcap} } func isPowerOfTwo(x uintptr) bool { return x&(x-1) == 0 } // slicecopy is used to copy from a string or slice of pointerless elements into a slice. func slicecopy(toPtr unsafe.Pointer, toLen int, fromPtr unsafe.Pointer, fromLen int, width uintptr) int { if fromLen == 0 || toLen == 0 { return 0 } n := fromLen if toLen < n { n = toLen } if width == 0 { return n } size := uintptr(n) * width if raceenabled { callerpc := getcallerpc() pc := funcPC(slicecopy) racereadrangepc(fromPtr, size, callerpc, pc) racewriterangepc(toPtr, size, callerpc, pc) } if msanenabled { msanread(fromPtr, size) msanwrite(toPtr, size) } if size == 1 { // common case worth about 2x to do here // TODO: is this still worth it with new memmove impl? *(*byte)(toPtr) = *(*byte)(fromPtr) // known to be a byte pointer } else { memmove(toPtr, fromPtr, size) } return n }