// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements typechecking of statements. package types import ( "go/ast" "go/constant" "go/token" "sort" ) func (check *Checker) funcBody(decl *declInfo, name string, sig *Signature, body *ast.BlockStmt, iota constant.Value) { if check.conf.IgnoreFuncBodies { panic("internal error: function body not ignored") } if trace { check.trace(body.Pos(), "--- %s: %s", name, sig) defer func() { check.trace(body.End(), "--- ") }() } // set function scope extent sig.scope.pos = body.Pos() sig.scope.end = body.End() // save/restore current context and setup function context // (and use 0 indentation at function start) defer func(ctxt context, indent int) { check.context = ctxt check.indent = indent }(check.context, check.indent) check.context = context{ decl: decl, scope: sig.scope, iota: iota, sig: sig, } check.indent = 0 check.stmtList(0, body.List) if check.hasLabel { check.labels(body) } if sig.results.Len() > 0 && !check.isTerminating(body, "") { check.error(atPos(body.Rbrace), _MissingReturn, "missing return") } // TODO(gri) Should we make it an error to declare generic functions // where the type parameters are not used? // 12/19/2018: Probably not - it can make sense to have an API with // all functions uniformly sharing the same type parameters. // spec: "Implementation restriction: A compiler may make it illegal to // declare a variable inside a function body if the variable is never used." check.usage(sig.scope) } func (check *Checker) usage(scope *Scope) { var unused []*Var for _, elem := range scope.elems { if v, _ := elem.(*Var); v != nil && !v.used { unused = append(unused, v) } } sort.Slice(unused, func(i, j int) bool { return unused[i].pos < unused[j].pos }) for _, v := range unused { check.softErrorf(v, _UnusedVar, "%s declared but not used", v.name) } for _, scope := range scope.children { // Don't go inside function literal scopes a second time; // they are handled explicitly by funcBody. if !scope.isFunc { check.usage(scope) } } } // stmtContext is a bitset describing which // control-flow statements are permissible, // and provides additional context information // for better error messages. type stmtContext uint const ( // permissible control-flow statements breakOk stmtContext = 1 << iota continueOk fallthroughOk // additional context information finalSwitchCase ) func (check *Checker) simpleStmt(s ast.Stmt) { if s != nil { check.stmt(0, s) } } func trimTrailingEmptyStmts(list []ast.Stmt) []ast.Stmt { for i := len(list); i > 0; i-- { if _, ok := list[i-1].(*ast.EmptyStmt); !ok { return list[:i] } } return nil } func (check *Checker) stmtList(ctxt stmtContext, list []ast.Stmt) { ok := ctxt&fallthroughOk != 0 inner := ctxt &^ fallthroughOk list = trimTrailingEmptyStmts(list) // trailing empty statements are "invisible" to fallthrough analysis for i, s := range list { inner := inner if ok && i+1 == len(list) { inner |= fallthroughOk } check.stmt(inner, s) } } func (check *Checker) multipleDefaults(list []ast.Stmt) { var first ast.Stmt for _, s := range list { var d ast.Stmt switch c := s.(type) { case *ast.CaseClause: if len(c.List) == 0 { d = s } case *ast.CommClause: if c.Comm == nil { d = s } default: check.invalidAST(s, "case/communication clause expected") } if d != nil { if first != nil { check.errorf(d, _DuplicateDefault, "multiple defaults (first at %s)", check.fset.Position(first.Pos())) } else { first = d } } } } func (check *Checker) openScope(node ast.Node, comment string) { scope := NewScope(check.scope, node.Pos(), node.End(), comment) check.recordScope(node, scope) check.scope = scope } func (check *Checker) closeScope() { check.scope = check.scope.Parent() } func assignOp(op token.Token) token.Token { // token_test.go verifies the token ordering this function relies on if token.ADD_ASSIGN <= op && op <= token.AND_NOT_ASSIGN { return op + (token.ADD - token.ADD_ASSIGN) } return token.ILLEGAL } func (check *Checker) suspendedCall(keyword string, call *ast.CallExpr) { var x operand var msg string var code errorCode switch check.rawExpr(&x, call, nil) { case conversion: msg = "requires function call, not conversion" code = _InvalidDefer if keyword == "go" { code = _InvalidGo } case expression: msg = "discards result of" code = _UnusedResults case statement: return default: unreachable() } check.errorf(&x, code, "%s %s %s", keyword, msg, &x) } // goVal returns the Go value for val, or nil. func goVal(val constant.Value) interface{} { // val should exist, but be conservative and check if val == nil { return nil } // Match implementation restriction of other compilers. // gc only checks duplicates for integer, floating-point // and string values, so only create Go values for these // types. switch val.Kind() { case constant.Int: if x, ok := constant.Int64Val(val); ok { return x } if x, ok := constant.Uint64Val(val); ok { return x } case constant.Float: if x, ok := constant.Float64Val(val); ok { return x } case constant.String: return constant.StringVal(val) } return nil } // A valueMap maps a case value (of a basic Go type) to a list of positions // where the same case value appeared, together with the corresponding case // types. // Since two case values may have the same "underlying" value but different // types we need to also check the value's types (e.g., byte(1) vs myByte(1)) // when the switch expression is of interface type. type ( valueMap map[interface{}][]valueType // underlying Go value -> valueType valueType struct { pos token.Pos typ Type } ) func (check *Checker) caseValues(x *operand, values []ast.Expr, seen valueMap) { L: for _, e := range values { var v operand check.expr(&v, e) if x.mode == invalid || v.mode == invalid { continue L } check.convertUntyped(&v, x.typ) if v.mode == invalid { continue L } // Order matters: By comparing v against x, error positions are at the case values. res := v // keep original v unchanged check.comparison(&res, x, token.EQL) if res.mode == invalid { continue L } if v.mode != constant_ { continue L // we're done } // look for duplicate values if val := goVal(v.val); val != nil { // look for duplicate types for a given value // (quadratic algorithm, but these lists tend to be very short) for _, vt := range seen[val] { if check.identical(v.typ, vt.typ) { check.errorf(&v, _DuplicateCase, "duplicate case %s in expression switch", &v) check.error(atPos(vt.pos), _DuplicateCase, "\tprevious case") // secondary error, \t indented continue L } } seen[val] = append(seen[val], valueType{v.Pos(), v.typ}) } } } func (check *Checker) caseTypes(x *operand, xtyp *Interface, types []ast.Expr, seen map[Type]ast.Expr) (T Type) { L: for _, e := range types { T = check.typeOrNil(e) if T == Typ[Invalid] { continue L } if T != nil { check.ordinaryType(e, T) } // look for duplicate types // (quadratic algorithm, but type switches tend to be reasonably small) for t, other := range seen { if T == nil && t == nil || T != nil && t != nil && check.identical(T, t) { // talk about "case" rather than "type" because of nil case Ts := "nil" if T != nil { Ts = T.String() } check.errorf(e, _DuplicateCase, "duplicate case %s in type switch", Ts) check.error(other, _DuplicateCase, "\tprevious case") // secondary error, \t indented continue L } } seen[T] = e if T != nil { check.typeAssertion(e, x, xtyp, T) } } return } // stmt typechecks statement s. func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) { // statements must end with the same top scope as they started with if debug { defer func(scope *Scope) { // don't check if code is panicking if p := recover(); p != nil { panic(p) } assert(scope == check.scope) }(check.scope) } // process collected function literals before scope changes defer check.processDelayed(len(check.delayed)) inner := ctxt &^ (fallthroughOk | finalSwitchCase) switch s := s.(type) { case *ast.BadStmt, *ast.EmptyStmt: // ignore case *ast.DeclStmt: check.declStmt(s.Decl) case *ast.LabeledStmt: check.hasLabel = true check.stmt(ctxt, s.Stmt) case *ast.ExprStmt: // spec: "With the exception of specific built-in functions, // function and method calls and receive operations can appear // in statement context. Such statements may be parenthesized." var x operand kind := check.rawExpr(&x, s.X, nil) var msg string var code errorCode switch x.mode { default: if kind == statement { return } msg = "is not used" code = _UnusedExpr case builtin: msg = "must be called" code = _UncalledBuiltin case typexpr: msg = "is not an expression" code = _NotAnExpr } check.errorf(&x, code, "%s %s", &x, msg) case *ast.SendStmt: var ch, x operand check.expr(&ch, s.Chan) check.expr(&x, s.Value) if ch.mode == invalid || x.mode == invalid { return } tch := asChan(ch.typ) if tch == nil { check.invalidOp(inNode(s, s.Arrow), _InvalidSend, "cannot send to non-chan type %s", ch.typ) return } if tch.dir == RecvOnly { check.invalidOp(inNode(s, s.Arrow), _InvalidSend, "cannot send to receive-only type %s", tch) return } check.assignment(&x, tch.elem, "send") case *ast.IncDecStmt: var op token.Token switch s.Tok { case token.INC: op = token.ADD case token.DEC: op = token.SUB default: check.invalidAST(inNode(s, s.TokPos), "unknown inc/dec operation %s", s.Tok) return } var x operand check.expr(&x, s.X) if x.mode == invalid { return } if !isNumeric(x.typ) { check.invalidOp(s.X, _NonNumericIncDec, "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ) return } Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position check.binary(&x, nil, s.X, Y, op, s.TokPos) if x.mode == invalid { return } check.assignVar(s.X, &x) case *ast.AssignStmt: switch s.Tok { case token.ASSIGN, token.DEFINE: if len(s.Lhs) == 0 { check.invalidAST(s, "missing lhs in assignment") return } if s.Tok == token.DEFINE { check.shortVarDecl(inNode(s, s.TokPos), s.Lhs, s.Rhs) } else { // regular assignment check.assignVars(s.Lhs, s.Rhs) } default: // assignment operations if len(s.Lhs) != 1 || len(s.Rhs) != 1 { check.errorf(inNode(s, s.TokPos), _MultiValAssignOp, "assignment operation %s requires single-valued expressions", s.Tok) return } op := assignOp(s.Tok) if op == token.ILLEGAL { check.invalidAST(atPos(s.TokPos), "unknown assignment operation %s", s.Tok) return } var x operand check.binary(&x, nil, s.Lhs[0], s.Rhs[0], op, s.TokPos) if x.mode == invalid { return } check.assignVar(s.Lhs[0], &x) } case *ast.GoStmt: check.suspendedCall("go", s.Call) case *ast.DeferStmt: check.suspendedCall("defer", s.Call) case *ast.ReturnStmt: res := check.sig.results if res.Len() > 0 { // function returns results // (if one, say the first, result parameter is named, all of them are named) if len(s.Results) == 0 && res.vars[0].name != "" { // spec: "Implementation restriction: A compiler may disallow an empty expression // list in a "return" statement if a different entity (constant, type, or variable) // with the same name as a result parameter is in scope at the place of the return." for _, obj := range res.vars { if alt := check.lookup(obj.name); alt != nil && alt != obj { check.errorf(s, _OutOfScopeResult, "result parameter %s not in scope at return", obj.name) check.errorf(alt, _OutOfScopeResult, "\tinner declaration of %s", obj) // ok to continue } } } else { // return has results or result parameters are unnamed check.initVars(res.vars, s.Results, s.Return) } } else if len(s.Results) > 0 { check.error(s.Results[0], _WrongResultCount, "no result values expected") check.use(s.Results...) } case *ast.BranchStmt: if s.Label != nil { check.hasLabel = true return // checked in 2nd pass (check.labels) } switch s.Tok { case token.BREAK: if ctxt&breakOk == 0 { check.error(s, _MisplacedBreak, "break not in for, switch, or select statement") } case token.CONTINUE: if ctxt&continueOk == 0 { check.error(s, _MisplacedContinue, "continue not in for statement") } case token.FALLTHROUGH: if ctxt&fallthroughOk == 0 { msg := "fallthrough statement out of place" code := _MisplacedFallthrough if ctxt&finalSwitchCase != 0 { msg = "cannot fallthrough final case in switch" } check.error(s, code, msg) } default: check.invalidAST(s, "branch statement: %s", s.Tok) } case *ast.BlockStmt: check.openScope(s, "block") defer check.closeScope() check.stmtList(inner, s.List) case *ast.IfStmt: check.openScope(s, "if") defer check.closeScope() check.simpleStmt(s.Init) var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond, _InvalidCond, "non-boolean condition in if statement") } check.stmt(inner, s.Body) // The parser produces a correct AST but if it was modified // elsewhere the else branch may be invalid. Check again. switch s.Else.(type) { case nil, *ast.BadStmt: // valid or error already reported case *ast.IfStmt, *ast.BlockStmt: check.stmt(inner, s.Else) default: check.invalidAST(s.Else, "invalid else branch in if statement") } case *ast.SwitchStmt: inner |= breakOk check.openScope(s, "switch") defer check.closeScope() check.simpleStmt(s.Init) var x operand if s.Tag != nil { check.expr(&x, s.Tag) // By checking assignment of x to an invisible temporary // (as a compiler would), we get all the relevant checks. check.assignment(&x, nil, "switch expression") if x.mode != invalid && !Comparable(x.typ) && !hasNil(x.typ) { check.errorf(&x, _InvalidExprSwitch, "cannot switch on %s (%s is not comparable)", &x, x.typ) x.mode = invalid } } else { // spec: "A missing switch expression is // equivalent to the boolean value true." x.mode = constant_ x.typ = Typ[Bool] x.val = constant.MakeBool(true) x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"} } check.multipleDefaults(s.Body.List) seen := make(valueMap) // map of seen case values to positions and types for i, c := range s.Body.List { clause, _ := c.(*ast.CaseClause) if clause == nil { check.invalidAST(c, "incorrect expression switch case") continue } check.caseValues(&x, clause.List, seen) check.openScope(clause, "case") inner := inner if i+1 < len(s.Body.List) { inner |= fallthroughOk } else { inner |= finalSwitchCase } check.stmtList(inner, clause.Body) check.closeScope() } case *ast.TypeSwitchStmt: inner |= breakOk check.openScope(s, "type switch") defer check.closeScope() check.simpleStmt(s.Init) // A type switch guard must be of the form: // // TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . // // The parser is checking syntactic correctness; // remaining syntactic errors are considered AST errors here. // TODO(gri) better factoring of error handling (invalid ASTs) // var lhs *ast.Ident // lhs identifier or nil var rhs ast.Expr switch guard := s.Assign.(type) { case *ast.ExprStmt: rhs = guard.X case *ast.AssignStmt: if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 { check.invalidAST(s, "incorrect form of type switch guard") return } lhs, _ = guard.Lhs[0].(*ast.Ident) if lhs == nil { check.invalidAST(s, "incorrect form of type switch guard") return } if lhs.Name == "_" { // _ := x.(type) is an invalid short variable declaration check.softErrorf(lhs, _NoNewVar, "no new variable on left side of :=") lhs = nil // avoid declared but not used error below } else { check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause } rhs = guard.Rhs[0] default: check.invalidAST(s, "incorrect form of type switch guard") return } // rhs must be of the form: expr.(type) and expr must be an ordinary interface expr, _ := rhs.(*ast.TypeAssertExpr) if expr == nil || expr.Type != nil { check.invalidAST(s, "incorrect form of type switch guard") return } var x operand check.expr(&x, expr.X) if x.mode == invalid { return } xtyp, _ := under(x.typ).(*Interface) if xtyp == nil { check.errorf(&x, _InvalidTypeSwitch, "%s is not an interface", &x) return } check.ordinaryType(&x, xtyp) check.multipleDefaults(s.Body.List) var lhsVars []*Var // list of implicitly declared lhs variables seen := make(map[Type]ast.Expr) // map of seen types to positions for _, s := range s.Body.List { clause, _ := s.(*ast.CaseClause) if clause == nil { check.invalidAST(s, "incorrect type switch case") continue } // Check each type in this type switch case. T := check.caseTypes(&x, xtyp, clause.List, seen) check.openScope(clause, "case") // If lhs exists, declare a corresponding variable in the case-local scope. if lhs != nil { // spec: "The TypeSwitchGuard may include a short variable declaration. // When that form is used, the variable is declared at the beginning of // the implicit block in each clause. In clauses with a case listing // exactly one type, the variable has that type; otherwise, the variable // has the type of the expression in the TypeSwitchGuard." if len(clause.List) != 1 || T == nil { T = x.typ } obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T) scopePos := clause.Pos() + token.Pos(len("default")) // for default clause (len(List) == 0) if n := len(clause.List); n > 0 { scopePos = clause.List[n-1].End() } check.declare(check.scope, nil, obj, scopePos) check.recordImplicit(clause, obj) // For the "declared but not used" error, all lhs variables act as // one; i.e., if any one of them is 'used', all of them are 'used'. // Collect them for later analysis. lhsVars = append(lhsVars, obj) } check.stmtList(inner, clause.Body) check.closeScope() } // If lhs exists, we must have at least one lhs variable that was used. if lhs != nil { var used bool for _, v := range lhsVars { if v.used { used = true } v.used = true // avoid usage error when checking entire function } if !used { check.softErrorf(lhs, _UnusedVar, "%s declared but not used", lhs.Name) } } case *ast.SelectStmt: inner |= breakOk check.multipleDefaults(s.Body.List) for _, s := range s.Body.List { clause, _ := s.(*ast.CommClause) if clause == nil { continue // error reported before } // clause.Comm must be a SendStmt, RecvStmt, or default case valid := false var rhs ast.Expr // rhs of RecvStmt, or nil switch s := clause.Comm.(type) { case nil, *ast.SendStmt: valid = true case *ast.AssignStmt: if len(s.Rhs) == 1 { rhs = s.Rhs[0] } case *ast.ExprStmt: rhs = s.X } // if present, rhs must be a receive operation if rhs != nil { if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW { valid = true } } if !valid { check.error(clause.Comm, _InvalidSelectCase, "select case must be send or receive (possibly with assignment)") continue } check.openScope(s, "case") if clause.Comm != nil { check.stmt(inner, clause.Comm) } check.stmtList(inner, clause.Body) check.closeScope() } case *ast.ForStmt: inner |= breakOk | continueOk check.openScope(s, "for") defer check.closeScope() check.simpleStmt(s.Init) if s.Cond != nil { var x operand check.expr(&x, s.Cond) if x.mode != invalid && !isBoolean(x.typ) { check.error(s.Cond, _InvalidCond, "non-boolean condition in for statement") } } check.simpleStmt(s.Post) // spec: "The init statement may be a short variable // declaration, but the post statement must not." if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE { check.softErrorf(s, _InvalidPostDecl, "cannot declare in post statement") // Don't call useLHS here because we want to use the lhs in // this erroneous statement so that we don't get errors about // these lhs variables being declared but not used. check.use(s.Lhs...) // avoid follow-up errors } check.stmt(inner, s.Body) case *ast.RangeStmt: inner |= breakOk | continueOk check.openScope(s, "for") defer check.closeScope() // check expression to iterate over var x operand check.expr(&x, s.X) // determine key/value types var key, val Type if x.mode != invalid { typ := optype(x.typ) if _, ok := typ.(*Chan); ok && s.Value != nil { // TODO(gri) this also needs to happen for channels in generic variables check.softErrorf(atPos(s.Value.Pos()), _InvalidIterVar, "range over %s permits only one iteration variable", &x) // ok to continue } var msg string key, val, msg = rangeKeyVal(typ, isVarName(s.Key), isVarName(s.Value)) if key == nil || msg != "" { if msg != "" { // TODO(rFindley) should this be parenthesized, to be consistent with other qualifiers? msg = ": " + msg } check.softErrorf(&x, _InvalidRangeExpr, "cannot range over %s%s", &x, msg) // ok to continue } } // check assignment to/declaration of iteration variables // (irregular assignment, cannot easily map to existing assignment checks) // lhs expressions and initialization value (rhs) types lhs := [2]ast.Expr{s.Key, s.Value} rhs := [2]Type{key, val} // key, val may be nil if s.Tok == token.DEFINE { // short variable declaration; variable scope starts after the range clause // (the for loop opens a new scope, so variables on the lhs never redeclare // previously declared variables) var vars []*Var for i, lhs := range lhs { if lhs == nil { continue } // determine lhs variable var obj *Var if ident, _ := lhs.(*ast.Ident); ident != nil { // declare new variable name := ident.Name obj = NewVar(ident.Pos(), check.pkg, name, nil) check.recordDef(ident, obj) // _ variables don't count as new variables if name != "_" { vars = append(vars, obj) } } else { check.invalidAST(lhs, "cannot declare %s", lhs) obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable } // initialize lhs variable if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.initVar(obj, &x, "range clause") } else { obj.typ = Typ[Invalid] obj.used = true // don't complain about unused variable } } // declare variables if len(vars) > 0 { scopePos := s.X.End() for _, obj := range vars { // spec: "The scope of a constant or variable identifier declared inside // a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl // for short variable declarations) and ends at the end of the innermost // containing block." check.declare(check.scope, nil /* recordDef already called */, obj, scopePos) } } else { check.error(inNode(s, s.TokPos), _NoNewVar, "no new variables on left side of :=") } } else { // ordinary assignment for i, lhs := range lhs { if lhs == nil { continue } if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.assignVar(lhs, &x) } } } check.stmt(inner, s.Body) default: check.invalidAST(s, "invalid statement") } } // isVarName reports whether x is a non-nil, non-blank (_) expression. func isVarName(x ast.Expr) bool { if x == nil { return false } ident, _ := unparen(x).(*ast.Ident) return ident == nil || ident.Name != "_" } // rangeKeyVal returns the key and value type produced by a range clause // over an expression of type typ, and possibly an error message. If the // range clause is not permitted the returned key is nil or msg is not // empty (in that case we still may have a non-nil key type which can be // used to reduce the chance for follow-on errors). // The wantKey, wantVal, and hasVal flags indicate which of the iteration // variables are used or present; this matters if we range over a generic // type where not all keys or values are of the same type. func rangeKeyVal(typ Type, wantKey, wantVal bool) (Type, Type, string) { switch typ := typ.(type) { case *Basic: if isString(typ) { return Typ[Int], universeRune, "" // use 'rune' name } case *Array: return Typ[Int], typ.elem, "" case *Slice: return Typ[Int], typ.elem, "" case *Pointer: if typ := asArray(typ.base); typ != nil { return Typ[Int], typ.elem, "" } case *Map: return typ.key, typ.elem, "" case *Chan: var msg string if typ.dir == SendOnly { msg = "send-only channel" } return typ.elem, Typ[Invalid], msg case *_Sum: first := true var key, val Type var msg string typ.is(func(t Type) bool { k, v, m := rangeKeyVal(under(t), wantKey, wantVal) if k == nil || m != "" { key, val, msg = k, v, m return false } if first { key, val, msg = k, v, m first = false return true } if wantKey && !Identical(key, k) { key, val, msg = nil, nil, "all possible values must have the same key type" return false } if wantVal && !Identical(val, v) { key, val, msg = nil, nil, "all possible values must have the same element type" return false } return true }) return key, val, msg } return nil, nil, "" }